
Introduction to ATML Pad

June 2021

Ion Neag

Software Architect

Reston Software

ion.neag@restonsoftware.com

ATML Pad is a development environment for test descriptions, using the ATML Test
Description standard format

This presentation discusses the use of standards and software tools in model-based
development of test programs for Automatic Test Equipment (ATE)

ATML and XML Standards

NON-PROPRIETARY. © Reston Software. All Rights Reserved.2

Automatic Test Markup Language

W3C XML Standard W3C XSD Standard

IEEE ATML
Standard

ATML
Schemas

IEEE ATML
Standard

ATML
Schemas

IEEE ATML
Standard

ATML
Schemas

IEEE ATML
Standard

ATML
Schemas

ATML
Document

ATML
Document

ATML
Document

ATML
Document

ATML
Document

ATML
Document

ATML
User

ATML is a family of data exchange formats based on XML technology

ATML is standardized by the IEEE as IEEE 1671. The “ATML Family of standards” also
includes IEEE 1641 and IEEE 1636
• The XML Schemas identify the allowed elements, attributes, and their

relationships
• The Standards define the elements and attributes, and identify additional

relationships

User applications exchange ATML documents (XML instance document that conforms
to the ATML schemas)

ATML documents can be validated automatically for conformance with the ATML
standards and their ATML schemas.

2

IEEE 1671.4
Test

Configuration

IEEE 1671.6
Test Station
Description

3

IEEE 1671.1
Test

Description

IEEE 1636.1
Test

Results

Test
Program Te

st

A
d

ap
te

r

UUT

Instruments

Switching

R
ec

ei
ve

r

Controller

IEEE 1671.5
Test Adapter
Description

IEEE 1671.3
UUT

Description

IEEE 1641
Signal & Test

Definition

IEEE 1671
Components

IEEE 1671.2
Instrument
Description

The ATML Family of Standards

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

IEEE 1636-2
MAI

The slide shows the mapping of schemas from various ATML component standards and
related standards to Automatic Test System (ATS) hardware or software items.

Introduction to ATML

ATML Test Description Example

4 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

<td:Test ID="test3" name="V_O AC Voltage Test">
<td:Behavior>

<td:Description>With power on and input signal present,
measure AC voltage at the output.</td:Description>

</td:Behavior>
<td:Outcomes>

<td:Outcome ID="t3o1" value="Passed"/>
<td:Outcome ID="t3o2" value="Failed" qualifier="Low"/>

</td:Outcomes>
<td:TestResults>

<td:TestResult ID="t3tr1" name="V_O AC Voltage">
<td:ValueDescription>

<td:DatumDescription xsi:type="td:doubleDescription"
standardUnit="mV" unitQualifier="pk_pk">
<td:NominalValue value="44.7"/>

</td:DatumDescription>
</td:ValueDescription>
<td:TestLimits>

<td:Limit>
<c:SingleLimit comparator="GE">

<c:Datum xsi:type="c:double"
standardUnit="mV" unitQualifier="pk_pk"
value="40.0"/>

</c:SingleLimit>
</td:Limit>

</td:TestLimits>
</td:TestResult>

</td:TestResults>
</td:Test>

ATML documents are typically text files that contain XML text.

XML consists of elements organized hierarchically and attributes assigned to
elements. The elements and attributes have values with diverse data types (string,
integer, floating-point, …).

4

ATML is an Electronic Data
Interchange Format!

5 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

IEEE ATML
Standard

ATML
Schemas

Test
Engineer

Tool
Developer

Training

ATML documents are not designed to be handled manually. They are produced and
consumed by computer programs. IEEE Std 1671 defines an ATML software tool as
“a program or application used to create, debug, or maintain ATML conformant XML
instance documents”.

• The end users of ATML-compliant systems (product engineers, test engineers) can
focus on describing the targeted ATS entity, without being concerned with XML
concepts such as elements, attributes, type inheritance, or constraints

• The developers and integrators of ATML-compliant computer programs can look at
XML data directly, for integration and troubleshooting.

5

ATML Pad

ATML Pad: Development Environment for
UUT Test Models

6 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

IEEE 1671.1
Test

Description

IEEE 1671.3
UUT

Description

UUT Data

Test
Engineer

Product
Engineering

Diagnostic
Engineering

UUT SysML
Models

Diagnostic
Models

Engi-
neering
Analysis

UUT
CAD Files

Test
Program

Test
Data

Analysis

Test Engineering

Test
Documen-

tation

IEEE 1636.1
Test Results

Maintenance

IEEE 1636.2
Maintenance
Action Info.

Data
Valida-

tion

Editor

Validator

Im
p

o
rt

er

Ex
p

o
rt

er
Im

p
o

rt
er

Use cases
• Create UUT and Test Description through test engineering analysis, from UUT data

and
• Import UUT & Test data (limited)
• Validate UUT and Test Description
• Generate test program (automatic code generation, resource allocation, switch

path calculation, …)
• Generate test program documentation
• Input to test data analysis (ex. for test & diagnostic improvements)

ATML Pad is:
• Editor
• Validator
• Data Converter (Import & Export)

6

7 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

On-line input validation examples

Form-based
property editor

ATML document
structure

Form-Based Editor for ATML Documents

Standard window layout similar to Windows Explorer:
1. The top-level elements of the ATML document (Tests, Test Groups) are displayed
and can be edited in tree format, in the Project Explorer (left).
2. The properties of the selected element are displayed and can be edited in the
Property Editor (right).

Incorrect data input is identified through a red border (see examples). The error is
displayed in the mouse tooltip.

7

8 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

On-line design
validation

Graphical test flow
designer

Visual Editor for Test Sequences

Test sequencing within a test group can be edited graphically, in flowchart form
(optional feature).

Standard operation, similar to commonly-used drawing tools:
• Drag & drop color-coded symbols from toolbox
• Pan & zoom controls

Missing items, missing connections, and other design problems are displayed
dynamically in the error list. This feature guides beginner users through the design
process, helping them understand and apply the design rules.

8

9 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Main screen

Second screen

Dual-Screen Support

Dual screen support: the graphical editor pane can be undocked and moved to a
separate screen.

9

10 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Table-based IEEE 1641
signal editor(*)

On-line signal attribute
validation example

(*) With Spherea newWaveX-SD

Table-Based Editor for IEEE 1641 Signals

The IEEE 1641 signal definitions embedded in ATML documents can be edited in a
table. The values of signal attributes are displayed and can be changed.

Incorrect data input is identified through red text (see examples). The error is
displayed in the message area of the editor.

Note: For this feature to be available, a licensed installation of newWaveX-SD is
required on the computer where ATML Pad runs.

10

11 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Graphical IEEE
1641 signal editor
and simulator (*)

On-line signal
validation

TSF Libraries

Basic Signal
Components

Signal Simulation

Visual Editor for IEEE 1641 Signals

Model Exchange
via IEEE 1641

ATML
Pad

(*) With Spherea newWaveX-SD

newWaveX-SD (Signal Development) is a graphical design environment for signal-
based test & measurement developed by Spherea Technology. It provides the
facilities to design, build and simulate test signals prior to their inclusion in a test
program.

newWaveX-SD is integrated natively within ATML Pad through the standard format.
• Signal definitions can be viewed and edited in a pop-up windows that displays the

newWaveX-SD signal editor.
• The editor is used to configure signals, create new signal definitions, and simulate

signals.

11

12 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

ATML document
validation

Validation error list

ATML Document Validation

On-demand validation is available in two forms:
1. Document validation: validates the entire document against the ATML schemas.
Detects all data input errors normally detected by on-line validation, plus additional
structural errors of the document (see example).
2. Element validation: validates the selected element only. This command is much
faster, which can be useful during development.

Note: Full document validation is always required before data export.

12

13 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Quick command
button

1. Add new Test
2. Add to the Test new Outcomes

“Passed”, “Failed High”, “Failed
Low”

3. Add to the Test a new Test
Result, of type “double”

4. Add to the Test two new Limits,
of type “LL” and “UL”

Productivity Features

Sequences of operations commonly used during document creation are available as
“Quick Commands” (see example)

13

ATML Pad: Integration Capabilities

Exporters

ATML Test Description NI TestStand Custom

ATML Pad

Native Binary Format (.aptx)

Importers

ATML Test
Description

DiagML Microsoft Word Microsoft Excel Custom

14 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

ATML Pad has built-in import and export capabilities for ATML Test Description and
several other document / file formats. Custom importers and exporter for other
formats can be implemented by end users (details in the following slides).

14

DSI eXpress and ATML Pad : Automatic Generation of
ATML Test Sequences from UUT Diagnostic Models

15 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

UUT Diagnostic
Model

Diagnostic Study

Model Exchange
via DiagML

UUT Test
Sequence

eXpress is a model-based diagnostics engineering application developed by DSI
International. eXpress supports the design, capture, integration, evaluation and
optimization of system diagnostics, prognostics health management (PHM), systems
testability engineering, failure mode and effects analysis and system safety analysis.

eXpress is integrated with ATML Pad through DiagML, an open XML-based format
used to represent UUT, test, and diagnostic data. DiagML is a precursor of ATML Test
Description.

Design-to-test development flow using eXpress, DiagML, and ATML Pad:
1. Import UUT design data from CAD, SysML, or spreadsheets to eXpress (optional)
2. Develop diagnostic model in eXpress, adding functional dependencies, failure

information, …
3. Develop diagnostic study in eXpress, generating fault trees from the diagnostic

model
4. Export fault tree data to DiagML
5. Import DiagML into ATML Pad. The ATMl document will contain “sequence” test

groups, tests, and test points. The test behavior will be undefined.
6. Use ATML Pad to add detailed test information: test operations, signals,

15

measurements, limits, …
7. Export ATML Test Description from ATML Pad
8. Use ATML Test Description to generate test programs

15

ATML Pad and NI TestStand ATML
Toolkit: Automatic Code Generation

16 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

NI TestStand
Sequence

Code Module

Model Exchange via
ATML Test Description

UUT Test
Model

The NI TestStand ATML Toolkit is an add-on component of National Instruments (NI)
TestStand. It allows TestStand to translate ATML Test Description documents into
TestStand sequences and code modules written in LabVIEW or LabWindows™/CVI.

The NI TestStand ATML Toolkit is integrated with ATML Pad through a plug-in, using
the standard ATML Test Description format. ATML Pad invokes the translator on the
model that is currently loaded. The translator generates the test program and opens
the generated sequence file in TestStand.

16

ATML Test Description Translator

• Part of TestStand ATML Toolkit , an add-on product for
NI TestStand

• Translates ATML Test Description into a partial test
program composed of
– TestStand sequence files
– Code modules (LabVIEW or LabWindows/CVI) with “shell

code”
• Interface implementation (VIs or C function definitions)
• Test behavior description imported as code comments

• The test program is completed through manual coding
or user-developed Custom Code Generators

17 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

18

Test implementation
code goes here

Code module “shell” - CVI

NI TestStand Sequence file

ATML Test Description

Out-of-the-box Code Generation

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

The default conversion process supported by the Test Description Translator is as
follows:
1. The translator performs the automatic conversion of ATML Test Description

document to a partial test program, which consists of:
• A TestStand sequence file
• “Shell” code modules (LabVIEW or LabWindows/CVI)

• The default translator produces interface implementations only
(VIs in LabVIEW; C function definitions in LabWindows/CVI)

• Test behavior description is imported as code comments
2. Test engineers complete the test program through manual coding. This includes:

• Implementation of test behavior in code modules, such as:
• Instrument control
• UUT commands
• Calculations
• Operator I/O, etc.

• Possibly, additions to the sequence file

Out-of-the-box Code Generation

19

Test
implementation
code goes here

Code module “shell” - LabVIEW

NI TestStand Sequence file

ATML Test Description

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Same process with LabVIEW code

Custom Code Generator Example

20 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

NI TestStand
Sequence File

Code Module

ATML Test
Description

TestStand +
Test

Description
Translator

Custom Code
Generator

Interface

Implemen-
tation

Tests
Parameters

Limits
Test Groups

Steps

Operations

The translation process can be enhanced by developing custom code generators
• A generator consists of callback functions written in LabVIEW. These functions are

invoked automatically by the translator when specific elements are being
translated.

• Custom code generators can be used, for example, to produce code that
implements test behavior, thus reducing the need for manual coding.

The custom code generator translates test behavior information (usually Operations,
but can be custom format) into source code implementing that behavior.

Custom Code Generator Example

21 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Signal
description is

language-
and API-
agnostic

OR
OR…

Signal API

Instrument HAL

The generated code could contain:
• Calls to a signal-oriented API
• Calls to an instrument-oriented Hardware Abstraction Layer (HAL)
• Calls to instrument drivers
• IEEE 1641 Test Procedure Language (TPL), which can be:

• Converted to IEEE 1641 API calls and executed on 1641 run time
• Translated to a programing language in a later step

Incremental Updates

22

5.0

5.0

ATML Change

Test Program
Change

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

When the ATML document changes, the translator can be invoked in “update mode”.

In this mode, the translator modifies the previously generated test program,
propagates changes made to the ATML document.

The translator preserves changes that were made manually.

Using Test Libraries

23

Test Library

Resistance_Test

AC_Voltage_Test

Step calls existing
library Test

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Large test organization often maintain a library of commonly used tests. In TestStand ,
these are typically implemented as custom step types.

Tests described in the ATML document can be mapped to these custom step types
through a specialized XML element.

The translator recognizes the element and generates a call to the custom step type,
instead of generating a new code module.

ATML Pad: Extensibility

24 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Plug-in Plug-in

ATML Pad API

ATML Pad User Interface

ATML Pad
Project

Custom
Format Plug-in

Custom
Format

ATML Test
Description

ATML Test
Description

End users can create plug-ins to
• Import data from custom formats

• Multiple importers can aggregate data from multiple sources (design data,
simulation, diagnostic analysis)

• Custom importers can extract test requirements from legacy code
• Export data to custom formats

• Including automatic code generation for custom test languages
• Process data “in place”

• Example: automatic design verification (check that specific data items exist)
• Example: reorder tests to reduce average test execution time

24

Applications - TPS lifecycle support

25 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Product
Engineering

Test
Engineering

Test Program GenerationTest & UUT
Description

Test
Program

TPS
Conversion

TPS
Rehosting

TPS
Maintenance

TPS
Development

Test
Program
(Rev n)

Test
Program

(Rev n + 1)

New Test
Program

Test & UUT
Description

(Rev n)

Test & UUT
Description

(Rev n)

Test & UUT
Description

(Rev n)

Modification

Test Program Update

Test Program Generation

(allocation for new ATE)

Test Program Regeneration

(new test language)

TPS
Acquisition Product

Data
Test & UUT
Description

TPS
Acquisition
Management

TPS Acquisition: An initial, high-level Test Description is created. This includes, for
example, power requirements, signal requirements, and a test list. The high-level
description allows the estimation of development time, cost, risk, and reuse potential
through comparison with past developments.

TPS Development: Details are added to the Test Description. This includes test
parameters, test results, test sequences, and detailed test operations. The description
has a sufficient level of detail to enable automatic test program generation.

TPS Maintenance: Changes are made to the Test Description; the auto-generated test
program is updated automatically. This ensures consistency between the Test
Description (and thus test program documentation) and the test program.

TPS Rehosting: The test program requirements are re-allocated to the capabilities of
a new ATE. A new revision of the test program is generated.

TPS Conversion: New code is generated in a different test language. A new test
program is generated.

25

26 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

TPS pre-acquisition

Product
Data

ATML Test
Description

ATML UUT
Description

Common
Test Library

ATML Test
Station

Description

ATML
Instrument
Description

Reports
Require-
ments

Analysis

ATE Com-
patibility
AnalysisOther

Require-
ments

Specifica-
tion

Cost &
Risk

Analysis

Acquisition
Strategy

SOW RFP
To TPS development

Applications - TPS lifecycle support

Adapted from: “LeveragingATS
Standards and CDET to
ImproveTPS LifecycleProcesses”,
Tony Conard, NAVAIR ATS PM,
Timothy Davis, NAVAIR ATS SW
SME, Autotestcon 2019 TPS Panel

Requirements Analysis
• Inputs

• UUT Physical Characteristics
• UUT Electrical I/O
• Theory of Operations
• Critical Components
• Failure Modes
• Logistics Analysis
• etc.

• Outputs
• ATML UUT Description
• ATML Test Descriptions

• Can pull preexisting tests from library

ATE Compatibility Analysis
• Inputs:

• TPS requirements (signal-oriented)
• ATE capabilities (signal-oriented)

• Outputs

26

• Exception Report
• Complexity Report
• TAR Report

Assemble RFP for SRR-1

26

Applications - ATS multi-platform
support

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Product
Data

Product
Engineering

Test
Engineering

Test Program
GenerationATML Test

Description
Test

Program 1

Modification

Test
Program 2

Test Program
GenerationATML Test

Description

Test
Program 1

(Rev n)

Test
Program 2

(Rev n)

ATS
1

ATS
2

ATS
1

ATS
2

1. From a common set of requirements, two test programs are generated, targeting
two different hardware platforms (ATS 1 and ATS 1)

2. If a modification is needed (ex. correction or optimization), the modification is
performed on the Test Description model. New revisions of the Test Programs are
auto-generated.

This approach eliminates the need to modify two different test programs and
preserves their consistency automatically.

27

Model-Based Test Development
with ATML Pad

28 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

28

Traditional Test Software Development
for Automatic Test Systems

Requirements
Definition

• Form-based
editor

• Document editor

• Flowcharter

Code
Development

• Targets a specific
development
environment:
programing
language, API,
Test Executive

Test Execution

• Run Time
Services

• Signal-oriented
instrument
control

Test Results

29 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Corrections,
optimization

Problem: corrections and optimizations are made in code and not in requirements.
- In time, the code diverges from requirements
- Original requirements become obsolete, can no longer be reused to support code

changes during code maintenance, rehosting, or conversion

Model-Based Systems Engineering

30 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Functional
Behavior

Definition

Require-
ments

Capture

Implemen-
tation Verification

and
Validation

Model-based

• Model must be
precise and
complete

• Visual design,
with multiple
views for
stakeholders

Requirements-
driven

• Full model
traceability to
user
requirements and
system
requirements

Architecture-
centric

• Ensure structural
and functional
integrity

• Full derivation
traceability

Model

The discipline of Model-Based Systems Engineering advocates the use of a common
digital model to support all phases of the System Engineering process

Model-Based Test Development

Model
Development

• Visual design

• Requirements
capture

• Signal and test
definition

• Conversion of
model data

• Reconstruction
from results &
legacy code

• Data validation

• Simulation

Automatic
Code
Generation

• Resource
allocation

• Development
environment
targeting: test
programming
languages, APIs,
Test Executives

Test Execution

• Run Time
Services

• Signal-oriented
instrument
control

Test Results

31 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Closed-loop optimization

Making use of model-based systems engineering principles, the test development
process can be modified as shown.

Model development
Models for UUT, Test Requirements, ITA, Test Station, Instruments, …
Graphical / visual design
Model data import from: EDA, systems simulation, diagnostic modeling,
legacy systems
Model extraction / reconstruction from: test results, non-standard models (ex.
TRD), unstructured legacy data (ex. ATLAS code)
Data validation
Simulation

Automatic code generation
Resource allocation – targeting implementation to a specific ATE
Targeting implementation to a specific test development environment: test
programming languages, APIs, test executives

Test execution
Run-time signal services
Signal-oriented instrument control

Generation of test results
Closed-loop optimization of

Maintenance
Diagnostics
Test

Closed-loop optimization is performed on the Model, not on code. The code is
regenerated automatically.

31

Standards-Based, Signal-Oriented Model

Model-Based Test Development

32 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Signal &
Test

Definition

Require-
ments

Description

Code
Generation Analysis

Verification
Validation

Test
Execution

Results
Evaluation

Model
Optimiza-

tion

All stages of test program development (requirements analysis, design,
implementation, use, maintenance, and optimization) are based on a common model,
using industry-standard formats and signal abstractions.

Standards-Based Models for Automatic
Test Systems

33 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

UUT
Models

Signal
Models

Test
Equipment

Models

Automatic
Code

Generation

Resource
Allocation &
Switch Path
Calculation

Test
Program

Reqire-
ments

Capabili-
ties

ATML UUT Description,
Test Description

IEEE 1641 Signal and
Test Definition

ATML Test Station &
Instrument Description

ATML Test
Configuration

Test Results

ATML Test
Results

Signal-based,
UUT-oriented

models are ATE-
agnostic

What standard data formats are available for modeling Automatic Test Systems?
• IEEE 1671 ATML (Automatic Test Markup Language)
• IEEE 1641 Signal and Test Definition

Signal-based models tell you what to do, but not how to do it (in terms of instrument
operations). This allows them to be implemented & re-implemented on a variety of
ATE platforms.

Resource Allocation is the selection of an instrument or instrument subsystem for
each signal operation.

Switch Path Calculation identifies signal paths through the ATE switching subsystem,
from instruments to the UUT, for each Connect / Disconnect signal operation.

COTS Tools and Industry-Standard Data
Formats

• Data ownership

• Long-term sustainability of Automatic Test Systems

Storage of UUT, Test, and
Maintenance data in vendor-

independent formats

• Automatic code generation

• Full traceability to requirements
Model-based test

development

• Multi-platform support
Signal-based, UUT-oriented

models

• Through-life support for UUTs

• Feedback loops to optimize design, test, and maintenance
Multi-vendor solutions

34 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

34

Glossary & Abbreviations

• UUT = Unit Under Test: The entity to be tested. It may range from a simple
component to a complete system

• Test program: A program specifically intended for the testing of a UUT

• TPS = Test Program Set: The complete set of hardware, software, and
documentation needed to evaluate a UUT on a given test system

• ATE = Automatic Test Equipment: a system providing a test capability for
the automatic testing of one or more UUTs. The ATE system consists of a
controller, test resource devices, and peripherals. The controller directs
the testing process and interprets the results. The test resource devices
provide stimuli, measurements, and physical interconnections.

• ATS = Automatic Test System: Includes the ATE as well as all support
equipment, software, test programs, and adapters.

• ATML = Automatic Test Markup Language: a family of standards specified
in IEEE 1671, IEEE 1636.1, and IEEE 1641

35 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

35

Thank you!

36

This Photo is licensed under CC BY-NC

36

