

Standards-Based Digital Thread

as Authoritative Source of Truth

Chris Gorringe

Spherea Technology

Christchurch, UK

chris.gorringe@spherea.co.uk

Eric Gould

DSI International, Inc.

Orange, CA, USA

egould@dsiintl.com

Ion Neag

Reston Software

Reston, VA, USA

ion.neag@restonsoftware.com

Abstract—This paper discusses the integration of product, test,

diagnostic, and sustainment engineering disciplines using a

standards-based digital thread. After reviewing some of the

relative strengths and challenges of this approach (as compared to

other trends in digital engineering), we present a case study in

which a standards-based digital thread is used to flow detailed

design data into diagnostic and test engineering activities. This

integration not only creates opportunities for seamless automation

during product development, but also provides full traceability

from engineering databases to the test programs performed on

Automatic Test Systems and subsequent test results and diagnostic

reasoning. Notably, because all essential model data is stored

unambiguously in the thread, the thread itself becomes the

authoritative source of truth for a given project or enterprise.

Keywords—digital engineering, digital thread, model-based

engineering, diagnostic engineering, test program set development

I. INTRODUCTION

Recent trends in the digital transformation of engineering
practices have largely been characterized by two opposing,
though not necessarily incompatible, approaches. One of these
approaches attempts to incorporate as much project data as is
feasible into a master model that acts as the authoritative source
of truth for a given project or enterprise. This approach—which
is often based on Model-Based Systems Engineering (MBSE)
practices [1] and involves the extension of models used by
MBSE to include data from other disciplines—can be
characterized as a homogeneous, or assimilative approach to
digital engineering.

Another approach is to consider the various activities that
make up the engineering effort to be individual centers of
expertise, each the master of its own data. Adopting practices
similar to those used by Product Lifecycle Management (PLM),
digital transformation is achieved through the use of translators
and/or Application Programming Interfaces (APIs) that allow
data to be shared as needed between different activities and their
respective software applications (tools). Here, the authoritative
source of truth consists of the aggregate of these separate data
sets. This approach could be thought of as a heterogeneous, or
distributive approach to digital engineering.

Although each of these approaches has its strengths and
weaknesses, they both face the same challenges in semantics
when data is shared between disciplines with incompatible
ontologies—challenges that must be addressed repeatedly for
each new domain or data set that is incorporated into an
enterprise’s digital framework.

This paper explores a third approach to digital integration—
the use of a standards-based digital thread—where the domain-
specific formats that are used to transfer model data between
engineering activities collectively make up the authoritative
source of truth for that project or enterprise.

The use of standardized formats not only reduces the risk of
semantic disconnects; it also helps ensure that the enduring
record of a project (or, at a minimum, key activities within the
project) can be more easily resuscitated at a later time, when
engineers who had originally worked on that project—and
within whose minds much of the design knowledge would (for
better or worse) traditionally reside—are no longer available.

II. THREE APPROACHES TO DIGITAL INTEGRATION

We shall now discuss the relative strengths and weaknesses
of these three approaches to digital integration, bearing in mind
that these are not mutually-exclusive alternatives. At least for
the foreseeable future, the digital integration for any large-scale
project may well be a bricolage of different approaches—some
of which will have been strategically planned, with others taking
a more ad hoc approach, exploiting opportunities to leverage
engineering data as they arise.

A. Centralized (Master) Data Repository

a) Description: With this approach, data is stored in a

master format that constitutes the enduring source of truth for a

given project or enterprise. This data is translated, as needed,

into the formats used by the individual tools or activities that are

involved in the project (and translated back when the central

repository is updated). This approach offers the most obvious

compliance with the 2018 U.S. Department of Defense Digital

Engineering Strategy [2], which depicts Authoritative Source of

Truth as a central nucleus around which specialized models

radiate.

b) Strengths: The key advantage of this approach is its

singularity of data. Because master data is stored in a single

format/repository, configuration control is singularly focused.

The “master model” approach also promotes multi-purposing,

since project data is (presumably) exposed in an easily-accessed

location. Finally, for the reasons mentioned above, this approach

should—at least in the long term—produce a good Return On

Investment (ROI).

c) Challenges: Unfortunately, this ROI will likely not be

immediate; in fact, considerable resources may be required to

develop the infrastructure—including the underlying data

formats and translators—used by the central repository.

Moreover, the enforcement of configuration control will

inevitably result in internal political battles over who can and

cannot update the master models. If agreed-upon policies are too

restrictive, this may stunt the sharing of design data. If, on the

other hand, access is too liberal, there is the added risk that one

activity’s modifications to the master model might impede the

progress of activities in other disciplines (due either to semantic

incompatibilities, or inconvenient timing).

This exposes the fundamental challenge of the centralized,
“master model” approach to digital engineering—the fact that
different disciplines or activities often define data in different
ways and that different elements in the design may utilize the
same terminology, even though they are entirely different things
to their respective stakeholders. As a case in point, consider the
various (and incompatible) meanings of the word “function” in
a typical engineering project. Unless these semantic disconnects
are exposed using disciplinary ontologies, projects will run the
risk of data being multi-purposed in ways that hinder project
throughput, thereby casting a long shadow over the project or
enterprise’s digital transformation efforts.

B. Interconnected Centers of Expertise

a) Description: This approach to digital transformation

treats individual engineering activities as arbiters of their own

domain-specific data. Integration is achieved not by storing

data in a centralized master format, but rather by developing

interfaces and translators that allow data to be shared between

tools. With this approach, the authoritative source of truth for a

project or enterprise is essentially the aggregate of the models

used by the various activities and tools.

b) Strengths: By introducing integration only where it is

most useful, the “interconnected centers of expertise” approach

has a lower cost of entry than the implementation of a central

“master model” (which integrates activities regardless of

whether they benefit directly from that integratation). Also,

because digital transformation is performed on a smaller scale,

this approach typically produces a more immediate ROI. It is

also less likely to result in internal political battles, since

activities maintain control over their own data.

c) Challenges: Unfortunately, even though integration is

developed on a smaller scale, this strategy suffers from the

same semantic deficiencies as the “master model” approach.

Activities that intend to share design knowledge must clearly

define what the shared data items actually mean within their

disciplines; this is essential not only when developing a new

interface or translator, but also each time data exposed using an

existing mechanism is consumed by a new activity. These

discussions may not add much overhead; they are nevertheless

non-trival and their omission can introduce significant risk to a

project’s ability to meet its development milestones.

An additional challenge, unique to this approach, is posed by
structural incompatibilities between models. Resolving these
incompatibilities adds complexity to translation algorithms,
especially when bidirectional translation is required.

As data is passed between different engineering activities
(with duplicated data residing in the models used by each), the

risk still remains that different activities will end up working
with different versions of a design. Ad hoc digital integration
does little to ameliorate issues caused by the non-singularity of
data, issues that have plagued large-scale engineering projects
for decades. Because of this, configuration control for a
distributed source of truth involves not only the aggregation of
multiple models, but also sufficient knowledge of the overall
process to ensure that design updates are successfully pushed
through to all activities that rely on that data.

C. Standards-Based Digital Thread

a) Description: Within the MBSE domain, “digital

thread” is a data-driven architecture that links together

information generated from across the product lifecycle [3].

Like interconnected centers of expertise, a standards-based

digital thread stores data in multiple, domain-specific models.

The formats of these models, however, are non-proprietary,

well-defined and (if available and suitable) specified in widely

supported and consensus-based standards, set by recognized

standards organizations or the marketplace [4]. Individual

engineering activities both populate and consume the data that

is stored in these standardized formats. Collectively, these

models not only constitute the authoritative source of truth for

a given project, but also establish a digital thread that allows

design knowledge to flow between different engineering

activities.

b) Strengths: This approach has many of the strengths

exhibited by the other two approaches—in particular, low

initial investment, relatively quick ROI and the ease with which

design knowledge can be multi-purposed. More importantly,

because individual models are based on published standards

(and are therefore documented in detail), a standards-based

digital thread is much less likely to exhibit semantical

inconsistencies than the other approaches we’ve discussed. Not

only will different engineering activities be in agreement, but

the enduring source of truth will truly endure through years and

possibly decases. Design knowledge stored in the thread can be

unambiguously retrieved and used for future projects, since the

standards define the meaning of the stored data.

c) Challenges: Of course, this semantic clarity assumes

the existence of standards that are both unambiguous and

extendable—unambiguous in that they provide precise data

definitions (both in terms of syntax and semantics); extendable

in that they allow bespoke project or enterprise-specific data to

be stored in the models. Any extensions to the standardized data

in the digital thread must be (1) limited to data items for which

a usable standard not not exist and (2) documented as

thoroughly as the data items defined within the standards being

extended [5]. Disregarding these rules, opens the door—at least

in the short term—for some of the same political battles that we

described for the “master model” approach to digital

integration, with different groups vying for ownership of model

extensions and the information stored in the thread.

Moreover, with design knowledge distributed—with non-
singularity—across the digital thread, configuration control will
face the same challenges that we discussed for interconnected
centers of expertise (both in terms of model aggregation and data

consistency). However, strong configuration control should be
regarded as beneficial to the design process, rather than a
nuisance. Each update is backed up by a transaction history,
offering a full record of the design’s evolution. Standardized
interfaces facilitate the definition of enterprise rules that
automate verification of data consistency (because the
interconnecting of the models via standards is known).

 These challenges notwithstanding, standards-based digital
threads appear to offer the most promising and sustainable
approach to large-scale digital integration. The benefits of
universally understandable models—to platform owners, prime
integrators and their sub-contractors and suppliers—cannot be
underestimated. As existing standards mature over time—and
new standards appear extending the scope of standardized
engineering models—it would not be surprising if standards-
based digital threads become the dominant form of digital
integration for large-scale engineering efforts.

III. CASE STUDY

The following case study—in which a standards-based
digital thread is used to integrate design, test and diagnostic-
related activities performed by tools already in use within
industry—was demonstrated virtually in June 2021 and then
physically both at AUTOTESTCON 2022 and in a subsequent
industry-wide web demo. All in all, more than a dozen different
activities/software tools are linked by this thread. In the physical
demo, faults were inserted on a circuit card that was hooked up
to an automatic test station; diagnostic results were displayed on
a workstation that allowed the technician to visually identify the
components to replace or initiate additional troubleshooting.

The foundation of this case study is the series of standard
data formats that make up the digital thread that would represent

the authoritative source of truth for any project that utilizes this
process.

Although this process, shown in Figure 1, is actually a closed
loop, one could say that the digital thread “begins” with system
engineering’s model of the target circuit card. This data is then
used to create the model used by diagnostic engineering to
generate test sequences that can achieve the desired diagnostic
results. These sequences not only inform run-time diagnostics,
but also list the tests to be implemented by test engineering. The
resulting test definitions are mapped to signals, targeted to the
specific test equipment and then used to automatically generate
the test program code to be run on the test station. For each
inserted fault, test program results are processed by the run-time
diagnostics to identify repair items and—as needed—trigger
guided troubleshooting. Results from multiple test and
diagnostic sessions are used to enhance the diagnostics with
empirical data; this history is also analyzed for trends to identify
areas where updates to engineering models can improve product
design, manufacturing, and sustainment (thereby closing the
optimization loop).

Bear in mind that this digital thread represents an indicative
example; different projects may require different process flows
using these tools and formats. Moreover, although the specific
tools used in this study will be mentioned below, one of the
advantages of a standards-based digital thread is that other tools
can be plugged in and used in their place—provided they can
read from and write to the appropriate formats.

Figure 1 – Case Study - Process and Digital Thread

eXpressML
MBSE

Diagnostic

Engineering

DiagML

Test

Engineering

ATML Test

Description

(detailed)

Test Program

Generation
SIMICA Test

Results

Run-Time Test

& Diagnostics

Test Program

IEEE 1641

Signal Libraries

ATML Test

Station

Description

ATS

Engineering

Trend

Analysis /

Model

Updates

Reports

SysML

XMI

ATML Test

Description

(high-level)

Reports

Digital Thread

Standard

Model

Process

Artifact

 Figure 2 adds detail to the generic thread diagram from
Figure 1, showing the software tools used in the case study and
their use of standard model data. These will be described in
detail in the following sub-sections.

A. Model-Based Systems Engineering

The case study uses a purpose-built electronic board with
low-frequency analog, Radio Frequency (RF), and digital
circuits. Switches located throughout the circuit allow physical
fault insertion.

 The first step in the process was to develop a SysML model
for the board, using CATIA MagicDraw. The model defines the
external interface of the board, its components, and the
interfaces of these components. A SysML Internal Block
Diagram (IBD) defines component interconnections.

In addition to the functionality provided out-of-the-box by
the SysML language, we used a specialized profile (extension)
to describe the functional dependencies between the input and
output ports of components. This information, typically
available in the design phase, is used in the next step of the case
study.

We should point out that the use of SysML for modeling an
electronics board at the component level was chosen for
expediency. SysML models work best at higher levels of
assembly, while board-level design data is typically exchanged
in EDIF or similar data formats.

The SysML model is exported from MagicDraw into an
XMI document, which becomes part of the digital thread (Figure
2). The XML Metadata Interchange (XMI®) format is an Object
Management Group (OMG) standard for exchanging metadata
information via XML. It is commonly used in to exchange with
UML and SysML models [6].

In a parallel MBSE prototyping effort, a model of the same
board was developed in the open-source tool Capella [7].

B. Diagnostic Engineering

The next step in this case study is diagnostic engineering—
where eXpressTM (DSI’s flagship diagnostic engineering tool
[7]) is used to develop and validate diagnostic procedures, as
well as perform diagnostics-informed assessments of the design.
In the process represented within this case study, diagnostic
engineering is performed prior to test engineering. This not only

Figure 2 – Case Study – Software Tools Implementing the Digital Thread

SysML

XMI
DiagML

ATML Test

Description

(detailed)

SIMICA Test

Results

Test Program

(TestStand +

CVI / LabVIEW)

IEEE 1641

Signal Libraries

ATML Test

Station

Description

Reports

eXpressML

ATML Test

Description

(high-level)

Reports /

Messages /

Photos...

MagicDraw

Capella

eXpress

STAGE

ATML Pad

newWaveX-SD

newWaveX-PD

newWaveX-SD

OSA-RTS
TestStand

ATML Toolkit

newWaveX

Resource

Allocator

TestProcess

ATML

Test Program

(ANSII C)

NI TestStand

Executable

DSI

Workbench

Diagnostic Aid

MBSE

Diagnostic

Engineering

Test

Engineering

ATS

Engineering

Test Program

Generation

Run-Time Test

& Diagnostics

Trend

Analysis /

Model

Updates

DSI RTAT

Digital Thread

Standard

Model

Process

Tool

Artifact

...DiagML

To RTAT...

ATML Pad

SysML Plugin

Test Program

(TestStudio +

CVI)

Teradyne

TestStudio

ATML Pad

Plugin for

TestStudio

helps ensure that the set of implemented tests achieves the
diagnostic goals of the given project, but also reduces the burden
on test development (since effort will not be spent implementing
redundant or otherwise unnecessary tests).

Design data from the XMI document is first translated into
the eXpress Markup Language (eXpressML) format.
eXpressML documents the information that comprises the
model(s) used by diagnostic engineering—not only to develop
diagnostic test sequences, but also to perform diagnostic-
informed analyses of a system or device. The key information
that can be represented in eXpressML includes model topology
(components, ports, connectivity, functions and object states),
functional dependencies, reliability data (failure rates and failure
modes) and test definitions (including the rules used to generate
the coverage of each test).

Translation from SysML to eXpressML is performed by a
specialized plugin of the ATML Pad software. ATML Pad™ is
a development and integration environment for IEEE 1671
Automatic Test Markup Language (ATML) and related XML
formats [9]

The Capella model data is exported directly into eXpressML
using a specialized translator developed by Spherea [10].

The eXpressML data is then imported into eXpress, where it
is enhanced with reliability information (failure modes, failure
rates) and test definitions. The updated model data is then be
written back to eXpressML to provide an enduring, non-
proprietary representation of the work performed during
diagnostic engineering (Figure 2).

In addition to preliminary test descriptions (which will
ultimately be converted into test program code during later
stages of the process), eXpress also provides the diagnostic test
sequences that will be deployed in the run-time diagnostics—
not only to interpret test program results, but also to provide
additional troubleshooting where automatic testing does not
suffice. This test and diagnostic information is exported into a
DiagML document, which becomes part of the digital thread
(Figure 2). DiagML is a marketplace standard for representing
diagnostic procedures (with supporting data) [10].

It is important to note that, in this case study, the diagnostic
procedures deployed in the run-time diagnostics are the same as
those that are used to analyze, optimize & validate the diagnostic
capability of the system. This exemplifies one of the key benefits
of digital integration—that the different design and analytical
disciplines involved in a project utilize the same source data. In
this case, diagnostic-related assessments (not only Testability
analysis, but also diagnostic-informed Reliability, Risk & Safety
analyses) are not disconnected from the development of the
actual diagnostics to be performed in the field.

Furthermore, in this case study, these same test sequences,
exported to DiagML, are also used by STAGETM (DSI’s
platform for performing turnkey sustainment simulations [12])
to provide predicted behavior based on different maintenance
“cocktails”—that is, different combinations of predictive,
preventative and corrective maintenance. Simulation results
from STAGE are subsequently compared with the trend
analyses performed later in the process.

C. Test Engineering

During the test engineering phase of this process, DiagML
data is imported into ATML Pad, where it is translated into a
high-level ATML Test Description [13] for precisely the set of
tests that will be used by the diagnostics. These high-level test
descriptions are then augmented with sufficient behavioral detail
to allow the fully automatic generation of test program code. The
behavior information includes: stimuli sent to the Unit Under
Test (UUT), measurements of UUT’s responses, and
comparisons with the expected (nominal) UUT responses. The
comparisons produce the Pass/Fail outcomes that will drive run-
time diagnostics.

The stimuli and measurements are specified in terms of
signals applied, measured, or monitored at the interface of the
UUT. The signals are defined in Test Signal Framework (TSF)
libraries, using the format specified in the IEEE 1641 standard
[14].

The development of test descriptions was done in ATML
Pad, while the signal definitions were edited in newWaveX-SD
[15]. The complete test description model is exported to an
ATML Test Description, which becomes part of the digital
thread (Figure 2).

Next, the ATML Test Description model is translated into
test program code, in a target test programming language. In
this case study, we used the TestStand ATML Toolkit [16] to
generate an NI TestStand sequence and LabWindows/CVI code
modules [17] [18]. A custom Test Description translator from
the OSA-RTS toolkit [19] translates signal definitions into CVI
code inserts, in the format specified by the Test Procedure
Language (TPL) defined in the IEEE 1641 standard [14].

To produce executable test code, the TPL signal definitions
must be first allocated to the target Automatic Test Equipment
(ATE) platform. In this process, the requirements specified for
each signal are compared with the capabilities of the instruments
in the target ATE, with the goal of selecting an instrument
resource and a capability for each signal. The allocation is
performed by a component of the OSA-RTS toolkit, working in
conjunction with the newWaveX Resource Allocator.

Alternate development paths in our case use study the same
ATML Test Description model to generate test programs in
different languages:

• A custom Test Description translator from the OSA-RTS
toolkit translates signal definitions into LabVIEW code
modules for the NI TestStand sequence file.

• A specialized plugin for ATML Pad generates a Teradyne
TestStudio project file and LabWindows/CVI code
modules.

• The “TestProcessATML” application (part of the
newWaveX distribution) generates ANSII C test code,
which can be built directly into executables.

The encoding of test information in a standard format allows
the integration, in the same digital thread, of code generators for
any other test executives and programming languages.

Note that allocation relies on a signal-oriented description of
the target ATE, in the ATML Test Station description specified
by IEEE 1671.6 [21]. This description is typically produced by
a separate engineering process, depicted on the right-hand side
of Figure 2, which is outside the scope of this paper [22]. In the
case study, the ATML Test Station description was developed
using newWaveX-PD [23]. The ATML Test Description and the
ATML Test Station Description use common 1641 Signal
Libraries.

In the last step of this process, the allocated signal definitions
are converted into source code that implements the appropriate
instrument control operations. This step was again performed by
a component of the OSA-RTS toolkit, using a template-based
approach.

The flexible allocation algorithm based on standard signal
and ATE models allows the use of the same ATML Test
Description model to produce test programs targeted to multiple
ATEs (Figure 3).

It is important to note that the Test Program files don’t need
to be a part of the digital thread. All the information needed to
regenerate the Test Program is contained in the ATML Test
Description and the Signal Libraries, which are part of the tread.

D. Run-Time Test & Diagnostics (with History & Feedback)

When the test program is run, the test executive saves the test
results of individual executions using the standard SIMICA Test

Results format [24]. The Test Results documents become part of
the digital thread (Figure 2).

The NI TestStand test executive uses the standard test results
documents, in conjunction with an XSL Stylesheet, to generate
reports in HTML formats. These reports contain measurement
results, limits, and the pass/fail results of each executed Test.
Note that the Reports files don’t need to be a part of the digital
thread. All the information needed to regenerate the Reports is
contained in the SIMICA Test Results, which are part of the
tread.

Operator messages and Test Reports are commonly used to
identify the faulty components at the end of test program
execution. To highlight the flexibility gained through the use of
standard data formats, in this case study we also implemented
an alternative solution that uses run-time diagnostics.

Run-time diagnostics are developed using the test sequences
and isolated fault groups that were stored using DiagML in the
digital thread. This information is imported into a run-time
authoring tool (DSI’s RTAT), where the diagnostics are
supplemented with alternative views of the circuit card, pop-up
messages/labels, test & repair procedures, reference documents,
and any other information that will be useful to the technician
during production or maintenance. The authored project file is
then loaded into DSI WorkbenchTM, DSI’s guided
troubleshooting and embedded diagnostics tool, which provides
run-time diagnostics for this case study [25].

Figure 3 – Case Study – Support for Multiple ATE Platforms through Resource Allocation using Standard Signal and ATE Models

ATE 2

ATE 1

ATML Test

Description

(detailed)
SIMICA Test

Results
Test Program 1

ATML Test

Station

Description 2

ATML PadnewWaveX-PD

OSA-RTS
TestStand

ATML Toolkit

newWaveX

Resource

Allocator

Test Executive

Test

Engineering

ATS

Engineering

ATML Test

Station

Description 1

Test Program 2
Test Executive

SIMICA Test

Results

Trend

Analysis /

Model

Updates

Run-Time Test

& Diagnostics

Test Program

Generation

Standard

Model

Process

Software

Tool

Artifact

ATE

Platform

The directory where SIMICA Test Results documents are
saved by the test executive is monitored continuously by DSI
Workbench. When a new file is added to this directory, DSI
Workbench automatically loads the test results and displays the
status of the system on the technician’s monitor. Suspected
failures are both listed on the screen and color-coded in the
appropriate graphic view of the design. If the diagnostics
contains additional tests that can be used to further resolve a set
of suspected components, a troubleshooting session can then be
launched, guiding the technician through the additional manual
testing.

Once the technician has “corrected” the inserted fault, the
final resolution of the issue—regardless of whether it was the
action suggested by the diagnostics—is written to a database so
that it can be listed during future sessions as one of the historical
resolutions associated with that fault signature (i.e., the set of
failed tests). This provides the technician with an empirical
resource that addresses situations not covered by the engineering
diagnostics (such as unanticipated manufacturing defects, out-
of-date firmware or test station deficiencies).

E. Trend Analysis / Model Updates (closing the loop)

The Test Results produced over time by the test executive
can be used for trend analysis, to identify areas where the design,
tests or diagnostics can be further optimized to improve product
sustainment over time.

The Diagnostic Aide developed by the UK MOD [26] uses
historical SIMICA Test Results in conjunction with ATML
UUT and Test Descriptions (when available) to generate trend
analysis reports and improved ATML UUT and Test
Descriptions with added “learned” information. The
improvements can be, for example:

1. Changing the limits in a test or adding new tests to the end
of a sequence, so that the correct component or failure is
identified within an existing fault tree

2. Optimizing test flow to identify frequent faults quickly,
reducing overall test times

3. Adding tests to reduce ambiguity groups

IV. CASE STUDY - LESSONS LEARNED

A. Model Linking

As data items such as Components, Ports, Tests and Failure
Modes appear in multiple data models, stored within the digital
thread in documents with different formats, it is vital to be able
to “link” these items across models.

Ideally, each data item should be identified by a unique
identifier that gets recorded in all the applicable thread
documents and is recognized by all the software tools.
Unfortunately, this is not always possible because different data
formats and tools use different identification methods. In this
situation, the translation algorithms must ensure that
identification data is propagated and converted as needed.

For example, in our case study the identifiers for Tests are
recorded as follows:

• Attribute “Test Code”, in the eXpress tool, eXpressML,
and DiagML

• td:Test attribute “ID”, in ATML Test Description, ATML
Pad, and the TestStand TD Translator

• tr:Test attribute “testReferenceID”, in SIMICA Test
Results

• Attribute “Test Code”, in the DSI Workbench tool

The propagation of Test identifiers through the digital tread
is what allows DSI Workbench to recognize the Tests defined in
eXpress (earlier in the thread) and correctly interpret test
outcomes during run-time diagnostics.

As a second example, the signal requirements specified in
ATML Test Description and the signal capabilities from ATML
Test Station Description reference signal definitions from TSF
Libraries. These signal definitions are identified through the
unique combination of (XML namespace + complex type
name).

• When the Test Descriptions use the same TSF Libraries as
the Test Station Description, the XML namespaces are
common and identification by (XML namespace +
complex type name) is trivial.

• In TPS rehosting scenarios, the TSF Libraries will be
different, which means that the namespaces will be
different. The resource allocation algorithm cannot rely on
names and will have to identify signal definitions that are
functionally equivalent through their signal models

B. Model Incompatibilities

The data models used in different engineering disciplines
exhibit various incompatibilities. Here are some examples:

Structural/content differences:

• The SysML models support the concepts of “class”
(SysML Block) and “instance” (SysML Part); in the
functional models of eXpress, all objects are “instances”.

• The eXpress models and the ATML Test Description
models can accommodate arbitrary outcomes, to describe
Tests that can fail in multiple ways. On the other hand, test
executives usually only consider test outcomes as
Pass/Fail, possibly with High/Low qualifies, potentially
missing the more subtle diagnostic outcomes available in
the design.

Semantic differences:

• “Function” has a very specific meaning in eXpress,
different from its more generic meaning in a SysML
<<functionalRequirement>>.

• “Signal” has a restrictive meaning in SysML (i.e.,
asynchronous message) and a more general meaning in
IEEE 1641 (i.e., the output of a SignalFunction, which
could be an asynchronous message, an analog signal, a
digital signal etc.).

The model translation algorithms can take into account and
compensate for most of these differences. Occasionally,
models have to be designed in a manner that facilitates data
translation to or from other models.

C. Incremental Updates

As new information gets added in each phase of the iterative
process, it is important that model updates can be propagated to
other models without losing any of the data that was added
directly to the target models since the previous import.

For example, the TestStand TD Translator has an
incremental update mode where small changes to the ATML
Test Description (e.g., a limit change) can be incorporated in test
sequences that were generated earlier. Furthermore, the code
generation solution that incorporates the OSA-RTS custom TD
Translator eliminates this problem by supporting fully-
automatic code generation.

D. Customization and Extension Capabilities

In the implementation of the case study, we were able to
achieve model linking and compensate for model
incompatibilities through a combination of customizable
translation and translator plug-ins. For example, the model
linking issue for Test identifiers, described earlier in the paper,
was resolved as follows:

1. eXpress allows the specification of user-defined custom
attributes. One of these attributes is used for Test Codes.

2. The DiagML exporter of eXpress can be customized to
export specific custom attributes. The “Test Code” attribute
was added.

3. The DiagML importer of ATML Pad can be customized to
map specific custom attributes from DiagML to ATML
Test IDs. The “Test Code” attribute was selected.

4. NI TestStand supports the use of plug-in components to
customize Test Results generation. A simple plug-in was
developed, to assign the value of attribute td:Test.ID to
attribute tr:Test@testReferenceID.

5. DSI Workbench was customized to interpret the attribute
tr:Test@testReferenceID as the Test Code.

V. STEPS FORWARD

As we implemented the digital thread for the case study
described above, we identified a number of areas where the
process can be improved—not only for this specific case study,
but to support standards-based digital threads in general.

First of all, the process should be extended “to the left”, to
encompass requirements capture and the storage of
requirements information in a standard format such as the OMG
Requirements Interchange Format (ReqIF) [27]. Requirement
IDs should be traceable through all the standard documents in
the digital thread, and possibly through the artifacts produced by
the tools.

Furthermore, there are additional opportunities for digital
integration of the different activities that make up this particular
case study.

• In the case study, tests are defined through the Diagnostic
Engineering process. In practice, this is often achieved
through dialog between diagnostic modelers and product
engineers. To formalize this dialog, the thread should
allow for an initial set of tests and test-related data items
to be defined in the System Engineering process [28], with
subsequent refinement through iterative data exchanges
between Diagnostic Engineering and System Engineering.
Integrating this approach in a standards-based digital
thread is currently impossible, due to the lack of a standard
SysML representation for hardware tests. The adaptation
of the OMG-defined UML Testing Profile [29], designed
for software testing, is a possible solution to this limitation.

• The run-time diagnostic executive currently stores
individual diagnostic sessions and their resulting
maintenance actions in its own history & feedback
database. Although this relational database can be easily
parsed by other tools, the diagnostic reasoner should also
be updated to store this same data using the SIMICA
Maintenance Action Information format (IEEE 1636.2)
[30]. This would open up opportunities for extending this
standards-based digital thread into maintenance-related
activities.

• Simulation-based maintenance predictions are exported to
a simple, non-standard document. It would be useful if a
suitable standard can be identified for storing these
predictions so that the results of maintenance trade studies
can be more rigidly documented—and more seamlessly
compared with data from the field.

Another area in which this process can be improved would
be to replace commercial data interchange formats that originate
from the marketplace with formats that are defined by industry
standards.

• Unfortunately, because diagnostic engineering is not
performed in a consistent manner across industry, it is
unlikely that a universally acceptable standard will emerge
for the models used by this discipline (as a standard
substitute from eXpressML).

• On the other hand, the diagnostic procedures that are
generated by diagnostic engineering—which, for this
study, are represented using the marketplace standard
DiagML—can likely be stored using an industry standard
format such as IEEE 1232 AI-ESTATE [31].

Finally, during the implementation of this case study, a
limitation was identified that was shared by every one of the
formats that comprise this digital thread. Although the data
formats always have an area where version information can be
recorded, there is no standard way of representing—within the
individual data files of the thread—the history of the data stored
within that file. There is no way, for instance to identify if a
given Test Description has been updated to address design
changes introduced in a new version of the MBSE model (which
is several steps earlier in the thread). Each stage of the thread
may contain date and time stamps that indicate when the file was
updated—as well as the version of the data in the tool that most
recently updated the thread—however there is currently no
accepted (let alone standardized) format for documenting the

version of the source data and the different tools through which
it has passed before reaching a given stage of the thread. The
development of a standard practice and standard data structures
will become essential as configuration control procedures
evolve to address data consistency across a distributed model of
a design, including standards-based digital threads like those
described in this paper.

VI. CONCLUSIONS

The case study described in the paper demonstrates that
“digital thread” solutions for product, diagnostic, test, and
sustainment engineering can be developed using existing
industry standards and marketplace-defined open data formats.
While this end-to-end integrated solution is an innovative
prototype, the individual software tools, data formats, and the
processes they support are already integrated in applications
with TRL levels 8 … 9.

Standards-based digital threads offer semantic cohesiveness
that is missing from many other methods of digital integration.
When the knowledge stored in each stage of a digital thread is
unambiguously defined in an associated standard, software
interfaces and translators can be developed with fewer time-
consuming incompatibilities and misconceptions. This not only
facilitates the sharing of data along expected avenues, but also
fosters the discovery of new and unanticipated opportunities for
multi-purposing design knowledge.

Moreover, when a standards-based digital thread is used as a
primary method for documenting design knowledge (that is, as
an authoritative source of truth), data can be more easily
resuscitated and leveraged by future endeavors—not only within
updates to the current design, but also as a basis for the
development of new designs.

The use of standardized formats within a digital thread does
not, of course, eliminate all areas where disconnects can occur.
Resolving these disconnects may require extensions to standard
formats, customization of software tools, or changes in model
design.

Configuration control is of primary importance, especially
given that the reduction in duplicate efforts leads to greater
interdependence between different activities. When changes are
made to a design by one discipline, the updated data must flow
through the thread to all activities that are impacted by those
changes. Although this scenario is endemic to engineering in
general, a well-defined digital thread should ultimately help
projects manage the data flow, resulting in fewer version-related
disconnects.

All in all, the effective use of a standards-based digital thread
will result in more cohesive product development and
sustainment. Moreover, if the thread also serves as a project’s
enduring, authoritative source of truth; design knowledge will
be represented unambiguously, thereby providing a permanent,
reusable record of the design. These benefits should be
welcomed by all stakeholders in a given project or enterprise—
developers, integrators, maintainers, and end users.

REFERENCES

[1] INCOSE, “INCOSE MBSE Initiative”. [Online]. Available:
https://www.incose.org/incose-member-resources/working-
groups/transformational/mbse-initiative

[2] Office of the Deputy Assistant Secretary of Defense for Systems
Engineering, “Department of Defense Digital Engineering Strategy
(June 2018)”. [Online]. Available: https://sercuarc.org/wp-
content/uploads/2018/06/Digital-Engineering-Strategy_Approved.pdf

[3] V. Singh, and K. E. Willcox, “Engineering Design with Digital Thread”,
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, Kissimmee, FL, January 2018

[4] Office of the Under Secretary of Defense for Research and Engineering,
“Modular Open Systems Approach”. [Online]. Available:
https://ac.cto.mil/mosa/

[5] T. P. Lopes, I. A. Neag and J. E. Ralph, "The role of extensibility in
software standards for automatic test systems," IEEE Autotestcon, 2005,
Orlando, FL, USA, 2005

[6] Object Management Group, “XML Metadata Interchange”. [Online].
Available: https://www.omg.org/spec/XMI

[7] Capella, Open Source Solution for Model-Based Systems Engineering.
[Online]. Available: https://www.eclipse.org/capella/

[8] eXpress, System Modeling for Diagnostic Design and Analysis. DSI
International. [Online]. Available:
https://www.dsiintl.com/products/express/

[9] ATML Pad, Development and Integration Environment for Automatic
Test Markup Language. [Online]. Available: https://www.atmlpad.com/

[10] B. Bossa, “Model based approach to embrace digital thread”, Test and
Diagnostics in the Digital Thread Panel, AUTOTESTCON 2022

[11] E. Gould, D. Hartop, E. Lee, I. Neag, and M. Wilson, “DiagML – An
Interoperability Platform for Test and Diagnostics Software,” 2002
AUTOTESTCON Proceedings, pp. 597-607, IEEE 2002.

[12] STAGE, Health Management and Operational Support Simulation. DSI
International. [Online]. Available:
https://www.dsiintl.com/products/stage-diagnostic-simulation/

[13] IEEE Std 1671.1-2017 – IEEE Standard for Automatic Test Markup
Language (ATML) Test Descriptions. IEEE, 2017.

[14] IEEE Std 1641-2010 – IEEE Standard for Signal and Test Definition.
IEEE, 2010.

[15] newWaveX–SD. Spherea Technology. [Online]. Available:
https://www.spherea-technology.co.uk/Products/newWaveX/
newWaveXSD/newWaveXSD.htm

[16] TestStand ATML Toolkit. NI. [Online]. Available:
https://www.ni.com/en-us/shop/software/products/teststand-atml-
toolkit.html

[17] A. Jain and S. Delgado, "Automatic ATML test description translation
to a COTS test executive," 2009 IEEE AUTOTESTCON, Anaheim, CA,
USA, 2009, pp. 190-194

[18] L. Lindstrom and I. Neag, "Reducing test program costs through ATML-
based requirements conversion and code generation," 2013 IEEE
AUTOTESTCON, Schaumburg, IL, USA, 2013

[19] M. Cornish, A. Jain, M. Brown and T. Lopes, "An open source software
framework for the implementation of an open systems architecture, run-
time system," 2012 IEEE AUTOTESTCON Proceedings, Anaheim, CA,
USA, 2012, pp. 209-214

[20] IEEE Std 1671.2-2012 – IEEE Standard for Automatic Test Markup
Language (ATML) Instrument Description. IEEE, 2012.

[21] IEEE Std 1671.6-2015 – IEEE Standard for Automatic Test Markup
Language (ATML) Test Station Description. IEEE, 2012.

[22] C. Gorringe, T. Lopes and D. Pleasant, "ATML capabilities explained,"
2007 IEEE Autotestcon, Baltimore, MD, USA, 2007

[23] newWaveX–PD. Spherea Technology. [Online]. Available:
https://www.spherea-technology.co.uk/Products/newWaveX/
newWaveXPD.htm

[24] IEEE Std 1636.1-2018 – IEEE Standard for Software Interface for
Maintenance Information Collection and Analysis (SIMICA):

Exchanging Test Results and Session Information via the eXtensible
Markup Language (XML). IEEE, 2018.

[25] DSI Workbench, Guided Troubleshooting and Embedded Diagnostics
for the Technician. [Online]. Available:
https://www.dsiintl.com/products/dsi-workbench/

[26] C. Gorringe and M. Brown, "Maximising diagnostic performance: By
integrating COTS solutions via ATML standards to create smart
diagnostic," 2017 IEEE AUTOTESTCON, Schaumburg, IL, USA, 2017

[27] Object Management Group, “Requirements Interchange Format
(ReqIF)”. [Online]. Available: https://www.omg.org/reqif/

[28] C. A. Lansdowne, C. Gorringe and P. McCartney, "Experimental
applications of Automatic Test Markup Language (ATML)," 2012 IEEE
AUTOTESTCON Proceedings, Anaheim, CA, USA, 2012

[29] Object Management Group, “UML Testing Profile 2 (UTP2)”. [Online].
Available: https://www.omg.org/spec/UTP2

[30] IEEE Std 1636.2-2018 – IEEE Standard for Software Interface for
Maintenance Information Collection and Analysis (SIMICA):
Exchanging Maintenance Action Information via the eXtensible Markup
Language (XML). IEEE, 2018.

[31] IEEE Std 1232-2010 – IEEE Standard for Artificial Intelligence Exchange
and Service Tie to All Test Environments. IEEE, 2010.

	Plaque.pdf
	1570900138 final

