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Abstract—This paper discusses the integration of product, test, 

diagnostic, and sustainment engineering disciplines using a 

standards-based digital thread. After reviewing some of the 

relative strengths and challenges of this approach (as compared to 

other trends in digital engineering), we present a case study in 

which a standards-based digital thread is used to flow detailed 

design data into diagnostic and test engineering activities. This 

integration not only creates opportunities for seamless automation 

during product development, but also provides full traceability 

from engineering databases to the test programs performed on 

Automatic Test Systems and subsequent test results and diagnostic 

reasoning. Notably, because all essential model data is stored 

unambiguously in the thread, the thread itself becomes the 

authoritative source of truth for a given project or enterprise. 

Keywords—digital engineering, digital thread, model-based 

engineering, diagnostic engineering, test program set development 

I. INTRODUCTION 

Recent trends in the digital transformation of engineering 
practices have largely been characterized by two opposing, 
though not necessarily incompatible, approaches. One of these 
approaches attempts to incorporate as much project data as is 
feasible into a master model that acts as the authoritative source 
of truth for a given project or enterprise. This approach—which 
is often based on Model-Based Systems Engineering (MBSE) 
practices [1] and involves the extension of models used by 
MBSE to include data from other disciplines—can be 
characterized as a homogeneous, or assimilative approach to 
digital engineering. 

Another approach is to consider the various activities that 
make up the engineering effort to be individual centers of 
expertise, each the master of its own data. Adopting practices 
similar to those used by Product Lifecycle Management (PLM), 
digital transformation is achieved through the use of translators 
and/or Application Programming Interfaces (APIs) that allow 
data to be shared as needed between different activities and their 
respective software applications (tools). Here, the authoritative 
source of truth consists of the aggregate of these separate data 
sets. This approach could be thought of as a heterogeneous, or 
distributive approach to digital engineering. 

Although each of these approaches has its strengths and 
weaknesses, they both face the same challenges in semantics 
when data is shared between disciplines with incompatible 
ontologies—challenges that must be addressed repeatedly for 
each new domain or data set that is incorporated into an 
enterprise’s digital framework. 

This paper explores a third approach to digital integration—
the use of a standards-based digital thread—where the domain-
specific formats that are used to transfer model data between 
engineering activities collectively make up the authoritative 
source of truth for that project or enterprise.  

The use of standardized formats not only reduces the risk of 
semantic disconnects; it also helps ensure that the enduring 
record of a project (or, at a minimum, key activities within the 
project) can be more easily resuscitated at a later time, when 
engineers who had originally worked on that project—and 
within whose minds much of the design knowledge would (for 
better or worse) traditionally reside—are no longer available. 

II. THREE APPROACHES TO DIGITAL INTEGRATION 

We shall now discuss the relative strengths and weaknesses 
of these three approaches to digital integration, bearing in mind 
that these are not mutually-exclusive alternatives. At least for 
the foreseeable future, the digital integration for any large-scale 
project may well be a bricolage of different approaches—some 
of which will have been strategically planned, with others taking 
a more ad hoc approach, exploiting opportunities to leverage 
engineering data as they arise. 

A. Centralized (Master) Data Repository 

a) Description: With this approach, data is stored in a 

master format that constitutes the enduring source of truth for a 

given project or enterprise. This data is translated, as needed, 

into the formats used by the individual tools or activities that are 

involved in the project (and translated back when the central 

repository is updated). This approach offers the most obvious 

compliance with the 2018 U.S. Department of Defense Digital 

Engineering Strategy [2], which depicts Authoritative Source of 

Truth as a central nucleus around which specialized models 

radiate. 

b) Strengths: The key advantage of this approach is its 

singularity of data. Because master data is stored in a single 

format/repository, configuration control is singularly focused. 

The “master model” approach also promotes multi-purposing, 

since project data is (presumably) exposed in an easily-accessed 

location. Finally, for the reasons mentioned above, this approach 

should—at least in the long term—produce a good Return On 

Investment (ROI). 

c) Challenges: Unfortunately, this ROI will likely not be 

immediate; in fact, considerable resources may be required to 

develop the infrastructure—including the underlying data 

formats and translators—used by the central repository. 



Moreover, the enforcement of configuration control will 

inevitably result in internal political battles over who can and 

cannot update the master models. If agreed-upon policies are too 

restrictive, this may stunt the sharing of design data. If, on the 

other hand, access is too liberal, there is the added risk that one 

activity’s modifications to the master model might impede the 

progress of activities in other disciplines (due either to semantic 

incompatibilities, or inconvenient timing). 

This exposes the fundamental challenge of the centralized, 
“master model” approach to digital engineering—the fact that 
different disciplines or activities often define data in different 
ways and that different elements in the design may utilize the 
same terminology, even though they are entirely different things 
to their respective stakeholders. As a case in point, consider the 
various (and incompatible) meanings of the word “function” in 
a typical engineering project. Unless these semantic disconnects 
are exposed using disciplinary ontologies, projects will run the 
risk of data being multi-purposed in ways that hinder project 
throughput, thereby casting a long shadow over the project or 
enterprise’s digital transformation efforts. 

B. Interconnected Centers of Expertise 

a) Description: This approach to digital transformation 

treats individual engineering activities as arbiters of their own 

domain-specific data. Integration is achieved not by storing 

data in a centralized master format, but rather by developing 

interfaces and translators that allow data to be shared between 

tools. With this approach, the authoritative source of truth for a 

project or enterprise is essentially the aggregate of the models 

used by the various activities and tools. 

b) Strengths: By introducing integration only where it is 

most useful, the “interconnected centers of expertise” approach 

has a lower cost of entry than the implementation of a central 

“master model” (which integrates activities regardless of 

whether they benefit directly from that integratation). Also, 

because digital transformation is performed on a smaller scale, 

this approach typically produces a more immediate ROI. It is 

also less likely to result in internal political battles, since 

activities maintain control over their own data. 

c) Challenges: Unfortunately, even though integration is 

developed on a smaller scale, this strategy suffers from the 

same semantic deficiencies as the “master model” approach. 

Activities that intend to share design knowledge must clearly 

define what the shared data items actually mean within their 

disciplines; this is essential not only when developing a new 

interface or translator, but also each time data exposed using an 

existing mechanism is consumed by a new activity. These 

discussions may not add much overhead; they are nevertheless 

non-trival and their omission can introduce significant risk to a 

project’s ability to meet its development milestones.  

An additional challenge, unique to this approach, is posed by 
structural incompatibilities between models. Resolving these 
incompatibilities adds complexity to translation algorithms, 
especially when bidirectional translation is required. 

As data is passed between different engineering activities 
(with duplicated data residing in the models used by each), the 

risk still remains that different activities will end up working 
with different versions of a design. Ad hoc digital integration 
does little to ameliorate issues caused by the non-singularity of 
data, issues that have plagued large-scale engineering projects 
for decades. Because of this, configuration control for a 
distributed source of truth involves not only the aggregation of 
multiple models, but also sufficient knowledge of the overall 
process to ensure that design updates are successfully pushed 
through to all activities that rely on that data. 

C. Standards-Based Digital Thread 

a) Description: Within the MBSE domain, “digital 

thread” is a data-driven architecture that links together 

information generated from across the product lifecycle [3]. 

Like interconnected centers of expertise, a standards-based 

digital thread stores data in multiple, domain-specific models. 

The formats of these models, however, are non-proprietary, 

well-defined and (if available and suitable) specified in widely 

supported and consensus-based standards, set by recognized 

standards organizations or the marketplace [4]. Individual 

engineering activities both populate and consume the data that 

is stored in these standardized formats. Collectively, these 

models not only constitute the authoritative source of truth for 

a given project, but also establish a digital thread that allows 

design knowledge to flow between different engineering 

activities. 

b) Strengths: This approach has many of the strengths 

exhibited by the other two approaches—in particular, low 

initial investment, relatively quick ROI and the ease with which 

design knowledge can be multi-purposed. More importantly, 

because individual models are based on published standards 

(and are therefore documented in detail), a standards-based 

digital thread is much less likely to exhibit semantical 

inconsistencies than the other approaches we’ve discussed. Not 

only will different engineering activities be in agreement, but 

the enduring source of truth will truly endure through years and 

possibly decases. Design knowledge stored in the thread can be 

unambiguously retrieved and used for future projects, since the 

standards define the meaning of the stored data. 

c) Challenges: Of course, this semantic clarity assumes 

the existence of standards that are both unambiguous and 

extendable—unambiguous in that they provide precise data 

definitions (both in terms of syntax and semantics); extendable 

in that they allow bespoke project or enterprise-specific data to 

be stored in the models. Any extensions to the standardized data 

in the digital thread must be (1) limited to data items for which 

a usable standard not not exist and (2) documented as 

thoroughly as the data items defined within the standards being 

extended [5]. Disregarding these rules, opens the door—at least 

in the short term—for some of the same political battles that we 

described for the “master model” approach to digital 

integration, with different groups vying for ownership of model 

extensions and the information stored in the thread.  

Moreover, with design knowledge distributed—with non-
singularity—across the digital thread, configuration control will 
face the same challenges that we discussed for interconnected 
centers of expertise (both in terms of model aggregation and data 



consistency). However, strong configuration control should be 
regarded as beneficial to the design process, rather than a 
nuisance. Each update is backed up by a transaction history, 
offering a full record of the design’s evolution. Standardized 
interfaces facilitate the definition of enterprise rules that 
automate verification of data consistency (because the 
interconnecting of the models via standards is known). 

  These challenges notwithstanding, standards-based digital 
threads appear to offer the most promising and sustainable 
approach to large-scale digital integration. The benefits of 
universally understandable models—to platform owners, prime 
integrators and their sub-contractors and suppliers—cannot be 
underestimated. As existing standards mature over time—and 
new standards appear extending the scope of standardized 
engineering models—it would not be surprising if standards-
based digital threads become the dominant form of digital 
integration for large-scale engineering efforts.  

III. CASE STUDY  

The following case study—in which a standards-based 
digital thread is used to integrate design, test and diagnostic-
related activities performed by tools already in use within 
industry—was demonstrated virtually in June 2021 and then 
physically both at AUTOTESTCON 2022 and in a subsequent 
industry-wide web demo. All in all, more than a dozen different 
activities/software tools are linked by this thread. In the physical 
demo, faults were inserted on a circuit card that was hooked up 
to an automatic test station; diagnostic results were displayed on 
a workstation that allowed the technician to visually identify the 
components to replace or initiate additional troubleshooting.  

The foundation of this case study is the series of standard 
data formats that make up the digital thread that would represent 

the authoritative source of truth for any project that utilizes this 
process.  

Although this process, shown in Figure 1, is actually a closed 
loop, one could say that the digital thread “begins” with system 
engineering’s model of the target circuit card. This data is then 
used to create the model used by diagnostic engineering to 
generate test sequences that can achieve the desired diagnostic 
results. These sequences not only inform run-time diagnostics, 
but also list the tests to be implemented by test engineering. The 
resulting test definitions are mapped to signals, targeted to the 
specific test equipment and then used to automatically generate 
the test program code to be run on the test station. For each 
inserted fault, test program results are processed by the run-time 
diagnostics to identify repair items and—as needed—trigger 
guided troubleshooting. Results from multiple test and 
diagnostic sessions are used to enhance the diagnostics with 
empirical data; this history is also analyzed for trends to identify 
areas where updates to engineering models can improve product 
design, manufacturing, and sustainment (thereby closing the 
optimization loop). 

Bear in mind that this digital thread represents an indicative 
example; different projects may require different process flows 
using these tools and formats. Moreover, although the specific 
tools used in this study will be mentioned below, one of the 
advantages of a standards-based digital thread is that other tools 
can be plugged in and used in their place—provided they can 
read from and write to the appropriate formats.  

 

Figure 1 – Case Study - Process and Digital Thread 
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 Figure 2 adds detail to the generic thread diagram from 
Figure 1, showing the software tools used in the case study and 
their use of standard model data. These will be described in 
detail in the following sub-sections. 

A. Model-Based Systems Engineering 

The case study uses a purpose-built electronic board with 
low-frequency analog, Radio Frequency (RF), and digital 
circuits. Switches located throughout the circuit allow physical 
fault insertion. 

 The first step in the process was to develop a SysML model 
for the board, using CATIA MagicDraw. The model defines the 
external interface of the board, its components, and the 
interfaces of these components. A SysML Internal Block 
Diagram (IBD) defines component interconnections. 

In addition to the functionality provided out-of-the-box by 
the SysML language, we used a specialized profile (extension) 
to describe the functional dependencies between the input and 
output ports of components. This information, typically 
available in the design phase, is used in the next step of the case 
study. 

We should point out that the use of SysML for modeling an 
electronics board at the component level was chosen for 
expediency. SysML models work best at higher levels of 
assembly, while board-level design data is typically exchanged 
in EDIF or similar data formats. 

The SysML model is exported from MagicDraw into an 
XMI document, which becomes part of the digital thread (Figure 
2). The XML Metadata Interchange (XMI®) format is an Object 
Management Group (OMG) standard for exchanging metadata 
information via XML. It is commonly used in to exchange with 
UML and SysML models [6].  

In a parallel MBSE prototyping effort, a model of the same 
board was developed in the open-source tool Capella [7]. 

B. Diagnostic Engineering 

The next step in this case study is diagnostic engineering—
where eXpressTM (DSI’s flagship diagnostic engineering tool 
[7]) is used to develop and validate diagnostic procedures, as 
well as perform diagnostics-informed assessments of the design. 
In the process represented within this case study, diagnostic 
engineering is performed prior to test engineering. This not only 

Figure 2 – Case Study – Software Tools Implementing the Digital Thread 
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helps ensure that the set of implemented tests achieves the 
diagnostic goals of the given project, but also reduces the burden 
on test development (since effort will not be spent implementing 
redundant or otherwise unnecessary tests). 

Design data from the XMI document is first translated into 
the eXpress Markup Language (eXpressML) format. 
eXpressML documents the information that comprises the 
model(s) used by diagnostic engineering—not only to develop 
diagnostic test sequences, but also to perform diagnostic-
informed analyses of a system or device. The key information 
that can be represented in eXpressML includes model topology 
(components, ports, connectivity, functions and object states), 
functional dependencies, reliability data (failure rates and failure 
modes) and test definitions (including the rules used to generate 
the coverage of each test). 

Translation from SysML to eXpressML is performed by a 
specialized plugin of the ATML Pad software. ATML Pad™ is 
a development and integration environment for IEEE 1671 
Automatic Test Markup Language (ATML) and related XML 
formats [9] 

The Capella model data is exported directly into eXpressML 
using a specialized translator developed by Spherea [10]. 

The eXpressML data is then imported into eXpress, where it 
is enhanced with reliability information (failure modes, failure 
rates) and test definitions. The updated model data is then be 
written back to eXpressML to provide an enduring, non-
proprietary representation of the work performed during 
diagnostic engineering (Figure 2). 

In addition to preliminary test descriptions (which will 
ultimately be converted into test program code during later 
stages of the process), eXpress also provides the diagnostic test 
sequences that will be deployed in the run-time diagnostics—
not only to interpret test program results, but also to provide 
additional troubleshooting where automatic testing does not 
suffice. This test and diagnostic information is exported into a 
DiagML document, which becomes part of the digital thread 
(Figure 2). DiagML is a marketplace standard for representing 
diagnostic procedures (with supporting data) [10]. 

It is important to note that, in this case study, the diagnostic 
procedures deployed in the run-time diagnostics are the same as 
those that are used to analyze, optimize & validate the diagnostic 
capability of the system. This exemplifies one of the key benefits 
of digital integration—that the different design and analytical 
disciplines involved in a project utilize the same source data. In 
this case, diagnostic-related assessments (not only Testability 
analysis, but also diagnostic-informed Reliability, Risk & Safety 
analyses) are not disconnected from the development of the 
actual diagnostics to be performed in the field. 

Furthermore, in this case study, these same test sequences, 
exported to DiagML, are also used by STAGETM (DSI’s 
platform for performing turnkey sustainment simulations [12]) 
to provide predicted behavior based on different maintenance 
“cocktails”—that is, different combinations of predictive, 
preventative and corrective maintenance. Simulation results 
from STAGE are subsequently compared with the trend 
analyses performed later in the process. 

C. Test Engineering  

During the test engineering phase of this process, DiagML 
data is imported into ATML Pad, where it is translated into a 
high-level ATML Test Description [13] for precisely the set of 
tests that will be used by the diagnostics. These high-level test 
descriptions are then augmented with sufficient behavioral detail 
to allow the fully automatic generation of test program code. The 
behavior information includes: stimuli sent to the Unit Under 
Test (UUT), measurements of UUT’s responses, and 
comparisons with the expected (nominal) UUT responses. The 
comparisons produce the Pass/Fail outcomes that will drive run-
time diagnostics.  

The stimuli and measurements are specified in terms of 
signals applied, measured, or monitored at the interface of the 
UUT. The signals are defined in Test Signal Framework (TSF) 
libraries, using the format specified in the IEEE 1641 standard 
[14]. 

The development of test descriptions was done in ATML 
Pad, while the signal definitions were edited in newWaveX-SD 
[15]. The complete test description model is exported to an 
ATML Test Description, which becomes part of the digital 
thread (Figure 2). 

Next, the ATML Test Description model is translated into 
test program code, in a target test programming language.  In 
this case study, we used the TestStand ATML Toolkit [16] to 
generate an NI TestStand sequence and LabWindows/CVI code 
modules [17] [18]. A custom Test Description translator from 
the OSA-RTS toolkit [19] translates signal definitions into CVI 
code inserts, in the format specified by the Test Procedure 
Language (TPL) defined in the IEEE 1641 standard [14].  

To produce executable test code, the TPL signal definitions 
must be first allocated to the target Automatic Test Equipment 
(ATE) platform. In this process, the requirements specified for 
each signal are compared with the capabilities of the instruments 
in the target ATE, with the goal of selecting an instrument 
resource and a capability for each signal. The allocation is 
performed by a component of the OSA-RTS toolkit, working in 
conjunction with the newWaveX Resource Allocator. 

Alternate development paths in our case use study the same 
ATML Test Description model to generate test programs in 
different languages: 

• A custom Test Description translator from the OSA-RTS 
toolkit translates signal definitions into LabVIEW code 
modules for the NI TestStand sequence file. 

• A specialized plugin for ATML Pad generates a Teradyne 
TestStudio project file and LabWindows/CVI code 
modules. 

• The “TestProcessATML” application (part of the 
newWaveX distribution) generates ANSII C test code, 
which can be built directly into executables. 

The encoding of test information in a standard format allows 
the integration, in the same digital thread, of code generators for 
any other test executives and programming languages. 



Note that allocation relies on a signal-oriented description of 
the target ATE, in the ATML Test Station description specified 
by IEEE 1671.6 [21]. This description is typically produced by 
a separate engineering process, depicted on the right-hand side 
of Figure 2, which is outside the scope of this paper [22]. In the   
case study, the ATML Test Station description was developed 
using newWaveX-PD [23]. The ATML Test Description and the 
ATML Test Station Description use common 1641 Signal 
Libraries. 

In the last step of this process, the allocated signal definitions 
are converted into source code that implements the appropriate 
instrument control operations. This step was again performed by 
a component of the OSA-RTS toolkit, using a template-based 
approach. 

The flexible allocation algorithm based on standard signal 
and ATE models allows the use of the same ATML Test 
Description model to produce test programs targeted to multiple 
ATEs (Figure 3).  

It is important to note that the Test Program files don’t need 
to be a part of the digital thread. All the information needed to 
regenerate the Test Program is contained in the ATML Test 
Description and the Signal Libraries, which are part of the tread.  

D. Run-Time Test & Diagnostics (with History & Feedback) 

When the test program is run, the test executive saves the test 
results of individual executions using the standard SIMICA Test 

Results format [24]. The Test Results documents become part of 
the digital thread (Figure 2). 

The NI TestStand test executive uses the standard test results 
documents, in conjunction with an XSL Stylesheet, to generate 
reports in HTML formats. These reports contain measurement 
results, limits, and the pass/fail results of each executed Test. 
Note that the Reports files don’t need to be a part of the digital 
thread. All the information needed to regenerate the Reports is 
contained in the SIMICA Test Results, which are part of the 
tread. 

Operator messages and Test Reports are commonly used to 
identify the faulty components at the end of test program 
execution. To highlight the flexibility gained through the use of 
standard data formats, in this case study we also implemented 
an alternative solution that uses run-time diagnostics. 

Run-time diagnostics are developed using the test sequences 
and isolated fault groups that were stored using DiagML in the 
digital thread. This information is imported into a run-time 
authoring tool (DSI’s RTAT), where the diagnostics are 
supplemented with alternative views of the circuit card, pop-up 
messages/labels, test & repair procedures, reference documents, 
and any other information that will be useful to the technician 
during production or maintenance. The authored project file is 
then loaded into DSI WorkbenchTM, DSI’s guided 
troubleshooting and embedded diagnostics tool, which provides 
run-time diagnostics for this case study [25]. 

Figure 3 – Case Study – Support for Multiple ATE Platforms through Resource Allocation using Standard Signal and ATE Models 
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The directory where SIMICA Test Results documents are 
saved by the test executive is monitored continuously by DSI 
Workbench. When a new file is added to this directory, DSI 
Workbench automatically loads the test results and displays the 
status of the system on the technician’s monitor. Suspected 
failures are both listed on the screen and color-coded in the 
appropriate graphic view of the design. If the diagnostics 
contains additional tests that can be used to further resolve a set 
of suspected components, a troubleshooting session can then be 
launched, guiding the technician through the additional manual 
testing. 

Once the technician has “corrected” the inserted fault, the 
final resolution of the issue—regardless of whether it was the 
action suggested by the diagnostics—is written to a database so 
that it can be listed during future sessions as one of the historical 
resolutions associated with that fault signature (i.e., the set of 
failed tests). This provides the technician with an empirical 
resource that addresses situations not covered by the engineering 
diagnostics (such as unanticipated manufacturing defects, out-
of-date firmware or test station deficiencies).  

E. Trend Analysis / Model Updates (closing the loop) 

The Test Results produced over time by the test executive 
can be used for trend analysis, to identify areas where the design, 
tests or diagnostics can be further optimized to improve product 
sustainment over time.  

The Diagnostic Aide developed by the UK MOD [26] uses 
historical SIMICA Test Results in conjunction with ATML 
UUT and Test Descriptions (when available) to generate trend 
analysis reports and improved ATML UUT and Test 
Descriptions with added “learned” information. The 
improvements can be, for example: 

1. Changing the limits in a test or adding new tests to the end 
of a sequence, so that the correct component or failure is 
identified within an existing fault tree 

2. Optimizing test flow to identify frequent faults quickly, 
reducing overall test times 

3. Adding tests to reduce ambiguity groups 

IV. CASE STUDY - LESSONS LEARNED 

A. Model Linking 

As data items such as Components, Ports, Tests and Failure 
Modes appear in multiple data models, stored within the digital 
thread in documents with different formats, it is vital to be able 
to “link” these items across models.   

Ideally, each data item should be identified by a unique 
identifier that gets recorded in all the applicable thread 
documents and is recognized by all the software tools. 
Unfortunately, this is not always possible because different data 
formats and tools use different identification methods. In this 
situation, the translation algorithms must ensure that 
identification data is propagated and converted as needed.  

For example, in our case study the identifiers for Tests are 
recorded as follows: 

• Attribute “Test Code”, in the eXpress tool, eXpressML, 
and DiagML 

• td:Test attribute “ID”, in ATML Test Description, ATML 
Pad, and the TestStand TD Translator 

• tr:Test attribute “testReferenceID”, in SIMICA Test 
Results 

• Attribute “Test Code”, in the DSI Workbench tool 

The propagation of Test identifiers through the digital tread 
is what allows DSI Workbench to recognize the Tests defined in 
eXpress (earlier in the thread) and correctly interpret test 
outcomes during run-time diagnostics. 

As a second example, the signal requirements specified in 
ATML Test Description and the signal capabilities from ATML 
Test Station Description reference signal definitions from TSF 
Libraries. These signal definitions are identified through the 
unique combination of (XML namespace + complex type 
name). 

• When the Test Descriptions use the same TSF Libraries as 
the Test Station Description, the XML namespaces are 
common and identification by (XML namespace + 
complex type name) is trivial. 

• In TPS rehosting scenarios, the TSF Libraries will be 
different, which means that the namespaces will be 
different. The resource allocation algorithm cannot rely on 
names and will have to identify signal definitions that are 
functionally equivalent through their signal models 

B. Model Incompatibilities 

The data models used in different engineering disciplines 
exhibit various incompatibilities. Here are some examples: 

Structural/content differences:  

• The SysML models support the concepts of “class” 
(SysML Block) and “instance” (SysML Part); in the 
functional models of eXpress, all objects are “instances”.  

• The eXpress models and the ATML Test Description 
models can accommodate arbitrary outcomes, to describe 
Tests that can fail in multiple ways. On the other hand, test 
executives usually only consider test outcomes as 
Pass/Fail, possibly with High/Low qualifies, potentially 
missing the more subtle diagnostic outcomes available in 
the design.  

Semantic differences:  

• “Function” has a very specific meaning in eXpress, 
different from its more generic meaning in a SysML 
<<functionalRequirement>>.  

• “Signal” has a restrictive meaning in SysML (i.e., 
asynchronous message) and a more general meaning in 
IEEE 1641 (i.e., the output of a SignalFunction, which 
could be an asynchronous message, an analog signal, a 
digital signal etc.). 



The model translation algorithms can take into account and 
compensate for most of these differences. Occasionally, 
models have to be designed in a manner that facilitates data 
translation to or from other models. 

C. Incremental Updates 

As new information gets added in each phase of the iterative 
process, it is important that model updates can be propagated to 
other models without losing any of the data that was added 
directly to the target models since the previous import.  

For example, the TestStand TD Translator has an 
incremental update mode where small changes to the ATML 
Test Description (e.g., a limit change) can be incorporated in test 
sequences that were generated earlier. Furthermore, the code 
generation solution that incorporates the OSA-RTS custom TD 
Translator eliminates this problem by supporting fully-
automatic code generation. 

D. Customization and Extension Capabilities 

In the implementation of the case study, we were able to 
achieve model linking and compensate for model 
incompatibilities through a combination of customizable 
translation and translator plug-ins. For example, the model 
linking issue for Test identifiers, described earlier in the paper, 
was resolved as follows: 

1. eXpress allows the specification of user-defined custom 
attributes. One of these attributes is used for Test Codes. 

2. The DiagML exporter of eXpress can be customized to 
export specific custom attributes. The “Test Code” attribute 
was added.  

3. The DiagML importer of ATML Pad can be customized to 
map specific custom attributes from DiagML to ATML 
Test IDs. The “Test Code” attribute was selected. 

4. NI TestStand supports the use of plug-in components to 
customize Test Results generation. A simple plug-in was 
developed, to assign the value of attribute td:Test.ID  to 
attribute tr:Test@testReferenceID. 

5. DSI Workbench was customized to interpret the attribute 
tr:Test@testReferenceID as the Test Code. 

V. STEPS FORWARD 

As we implemented the digital thread for the case study 
described above, we identified a number of areas where the 
process can be improved—not only for this specific case study, 
but to support standards-based digital threads in general.  

First of all, the process should be extended “to the left”, to 
encompass requirements capture and the storage of 
requirements information in a standard format such as the OMG 
Requirements Interchange Format (ReqIF) [27]. Requirement 
IDs should be traceable through all the standard documents in 
the digital thread, and possibly through the artifacts produced by 
the tools. 

Furthermore, there are additional opportunities for digital 
integration of the different activities that make up this particular 
case study.  

• In the case study, tests are defined through the Diagnostic 
Engineering process. In practice, this is often achieved 
through dialog between diagnostic modelers and product 
engineers. To formalize this dialog, the thread should 
allow for an initial set of tests and test-related data items 
to be defined in the System Engineering process [28], with 
subsequent refinement through iterative data exchanges 
between Diagnostic Engineering and System Engineering. 
Integrating this approach in a standards-based digital 
thread is currently impossible, due to the lack of a standard 
SysML representation for hardware tests. The adaptation 
of the OMG-defined UML Testing Profile [29], designed 
for software testing, is a possible solution to this limitation. 

• The run-time diagnostic executive currently stores 
individual diagnostic sessions and their resulting 
maintenance actions in its own history & feedback 
database. Although this relational database can be easily 
parsed by other tools, the diagnostic reasoner should also 
be updated to store this same data using the SIMICA 
Maintenance Action Information format (IEEE 1636.2) 
[30]. This would open up opportunities for extending this 
standards-based digital thread into maintenance-related 
activities.  

• Simulation-based maintenance predictions are exported to 
a simple, non-standard document. It would be useful if a 
suitable standard can be identified for storing these 
predictions so that the results of maintenance trade studies 
can be more rigidly documented—and more seamlessly 
compared with data from the field. 

Another area in which this process can be improved would 
be to replace commercial data interchange formats that originate 
from the marketplace with formats that are defined by industry 
standards.  

• Unfortunately, because diagnostic engineering is not 
performed in a consistent manner across industry, it is 
unlikely that a universally acceptable standard will emerge 
for the models used by this discipline (as a standard 
substitute from eXpressML).  

• On the other hand, the diagnostic procedures that are 
generated by diagnostic engineering—which, for this 
study, are represented using the marketplace standard 
DiagML—can likely be stored using an industry standard 
format such as IEEE 1232 AI-ESTATE [31]. 

Finally, during the implementation of this case study, a 
limitation was identified that was shared by every one of the 
formats that comprise this digital thread. Although the data 
formats always have an area where version information can be 
recorded, there is no standard way of representing—within the 
individual data files of the thread—the history of the data stored 
within that file. There is no way, for instance to identify if a 
given Test Description has been updated to address design 
changes introduced in a new version of the MBSE model (which 
is several steps earlier in the thread). Each stage of the thread 
may contain date and time stamps that indicate when the file was 
updated—as well as the version of the data in the tool that most 
recently updated the thread—however there is currently no 
accepted (let alone standardized) format for documenting the 



version of the source data and the different tools through which 
it has passed before reaching a given stage of the thread. The 
development of a standard practice and standard data structures 
will become essential as configuration control procedures 
evolve to address data consistency across a distributed model of 
a design, including standards-based digital threads like those 
described in this paper. 

VI. CONCLUSIONS 

The case study described in the paper demonstrates that 
“digital thread” solutions for product, diagnostic, test, and 
sustainment engineering can be developed using existing 
industry standards and marketplace-defined open data formats. 
While this end-to-end integrated solution is an innovative 
prototype, the individual software tools, data formats, and the 
processes they support are already integrated in applications 
with TRL levels 8 … 9. 

Standards-based digital threads offer semantic cohesiveness 
that is missing from many other methods of digital integration. 
When the knowledge stored in each stage of a digital thread is 
unambiguously defined in an associated standard, software 
interfaces and translators can be developed with fewer time-
consuming incompatibilities and misconceptions. This not only 
facilitates the sharing of data along expected avenues, but also 
fosters the discovery of new and unanticipated opportunities for 
multi-purposing design knowledge.  

Moreover, when a standards-based digital thread is used as a 
primary method for documenting design knowledge (that is, as 
an authoritative source of truth), data can be more easily 
resuscitated and leveraged by future endeavors—not only within 
updates to the current design, but also as a basis for the 
development of new designs.  

The use of standardized formats within a digital thread does 
not, of course, eliminate all areas where disconnects can occur. 
Resolving these disconnects may require extensions to standard 
formats, customization of software tools, or changes in model 
design.    

Configuration control is of primary importance, especially 
given that the reduction in duplicate efforts leads to greater 
interdependence between different activities. When changes are 
made to a design by one discipline, the updated data must flow 
through the thread to all activities that are impacted by those 
changes. Although this scenario is endemic to engineering in 
general, a well-defined digital thread should ultimately help 
projects manage the data flow, resulting in fewer version-related 
disconnects. 

All in all, the effective use of a standards-based digital thread 
will result in more cohesive product development and 
sustainment. Moreover, if the thread also serves as a project’s 
enduring, authoritative source of truth; design knowledge will 
be represented unambiguously, thereby providing a permanent, 
reusable record of the design. These benefits should be 
welcomed by all stakeholders in a given project or enterprise—
developers, integrators, maintainers, and end users. 
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